LETTER TO THE EDITOR

‘The anatomy underlying acute versus chronic spatial neglect’ also depends on clinical tests

Arnaud Saj,¹,² Vincent Verdon,³ Roland Vocat⁴ and Patrik Vuilleumier¹,²

¹ Department of Neurology, University Hospital of Geneva, Geneva, Switzerland
² Department of Neurosciences, Medical School, University of Geneva, Geneva, Switzerland
³ Department of Medicine, Neuropsychology Unit, Hospital of Neuchâtel, Neuchâtel, Switzerland
⁴ Health Network Valais, St-Maurice, Martigny and Sierre, Switzerland

Correspondence to: Dr Arnaud Saj,
Department of Neurology,
University Hospital of Geneva,
Rue Gabrielle-Perret-Gentil 4,
CH-1211 GENEVA 14,
Switzerland
E-mail: arnaud.saj@unige.ch

Sir,

We would like to make a few comments on the interesting paper recently published in Brain by Karnath et al. (2011). We were impressed by the careful assessment of spatial neglect during acute and chronic phase, which was combined with a solid voxel-wise lesion symptom mapping technique in a series of 54 patients with right-hemisphere stroke. Anatomical data indicated that lesions in the superior and middle temporal gyri, the basal ganglia, as well as the inferior occipitofrontal fasciculus are responsible for spatial neglect in both acute and chronic phases.

We also had the opportunity to evaluate 69 patients with right brain lesions longitudinally. Our patients were admitted after a first right-hemisphere stroke (mean delay: 7.5 ± 14.6 days), at a mean age of 64.95 ± 14.6 years. Mean delay between the acute and chronic phase was 350.21 ± 184.7 days. These demographic data are comparable with the patients of Karnath et al. (2011). Neglect was considered as present when patients failed at least two out of eight tests (Table 1)—unlike diagnoses based on two out three tests in Karnath et al. (2011). In the acute phase, 31 patients had neglect (45%). In the chronic phase, 17 of these 31 neglect patients still showed a significant impairment (55%). Using the same voxel-wise lesion mapping as Karnath et al. (2011), we found partly different results, particularly in the acute phase (detailed below). However, we believe that major differences in the findings may depend on the clinical measures used to define neglect, since this syndrome may include heterogeneous symptoms.

Bowen et al. (1999) reported that the frequency of occurrence of neglect in patients with right brain damage may vary considerably and range from 13% to 82%, due to variations in the assessment method used in different studies. In clinical practice, neglect is typically assessed by a battery of tasks rather than by a single test, reflecting the underlying heterogeneity of deficits. Indeed, patients with normal performance on certain tests may show clinically significant neglect in others (Buxbaum et al., 2004). Furthermore, the most commonly used tests in neuropsychological studies of spatial neglect do not take into account associated disorders, such as personal neglect, representational neglect or motor neglect (Azouvi et al., 2006; Verdon et al., 2010).

To clarify the source of lesion mapping differences across studies and determine the role of different methods for assessing spatial neglect after right hemisphere stroke, in both the acute and chronic phases, we conducted a series of analyses replicating and extending the work of Karnath et al. (2011). First, we used similar tests as these authors, consisting of two cancellation tasks with a visuomotor exploratory component (bells, Gauthier et al., 1989; and letters, Mesulam, 1999) and one drawing task with visuoconstructive and object-centred components (scene copy, Gainotti and Tiaci, 1970). Then, we performed another analysis based on a more complete battery of neglect tests (Azouvi et al., 2006), which is commonly used in the clinic and includes several paper-and-pencil tests that were adapted from the neuropsychology literature: line bisection (5, 20 cm), bell cancellation, letter cancellation, scene copy, clock drawing, text reading and writing (last name, first name...
and address). All of these tests assess different spatial components that may be disrupted differentially in patients with neglect and have partly distinct anatomical substrates (Verdon et al., 2010). The location and extent of brain damage was delineated in each patient, based on their native 3D MRI scan, and then reconstructed on a standardized brain template with the MRicro software (Rorden and Brett, 2000), as described elsewhere (Verdon et al., 2010; Vocat et al., 2011). The obtained lesions (regions of interest) were then submitted to voxel-based lesion symptom mapping (Bates et al., 2003; Baldo et al., 2006; Verdon et al., 2010; Karnath et al., 2011; Vocat et al., 2011) in order to determine the critical brain regions implicated in spatial neglect and its underlying components. To this aim, we first performed voxel-wise lesion symptom mapping analysis using a composite score of neglect severity based on a combination of measures (averaged z-scores of total omissions for cancellation tests (bell and letter test) and performance of scene copy from either the three tests of Karnath et al. (2011) or from all eight tests of our battery, for both the acute and the chronic phases. We also calculated a ‘centre of cancellation’ score for the cancellation tests (Karnath et al., 2011), but results were identical when using this measure as it was highly correlated (r > 0.91) with the number of left omissions.

Neuropsychology test results are described in Table 1. Figure 1A illustrates the voxel-wise lesion symptom mapping results for the assessment with three tests (composite global score) in the acute phase. The largest areas of lesions affected the superior and inferior parietal gyrus, the posterior portion of the superior and middle temporal gyri, as well as the lateral and medial occipital cortex, the frontal operculum and to a lesser degree, the posterior middle frontal gyrus (nearby the frontal eye field). At the subcortical level, lesions also affected the thalamus and anterior basal ganglia. For neglect in the chronic phase, lesions affected partly similar regions but predominantly in the posterior middle temporal gyrus, but with an extension to the depth of the temporoparietal junction and paraventricular white matter in the superior parietal lobe, plus to the lateral occipital cortex, and more anterior regions in the depth of the middle and superior frontal gyri. The insula and subcortical regions in the basal ganglia (putamen, pallidum, caudate) and thalamus were also affected, together with medial and subcortical portions of the temporal lobe in the parahippocampal and agmydalo-hippocampic regions. For neglect in the chronic phase, regions where injury predicted deficits were the temporoparietal junction (mostly extending subcortically in white matter) and the middle temporal gyrus.

These data are therefore partly similar to those found by Karnath et al. (2011), in particular for the right middle temporal gyrus; in fact their anatomical results for this region in the acute phase exhibit a striking degree of resemblance with our own data (compare their Fig. 2A with our Fig. 1B). However, in contrast to their findings, we observed a marked involvement of the parietal lobe (particularly superior areas) and of the occipital lobe when neglect diagnosis was based on three tests only. As the latter assessment included two cancellation tasks and one copying task, these anatomical correlates converge with previous studies (Mort et al., 2003) that found lesions in right parietal cortex to be associated with both perceptive and visuomotor spatial symptoms of neglect. These results also accord with functional neuroimaging data in healthy adults showing that activity in both occipital and parietal cortex contribute to efficient visual search performance (Nobre et al., 2003; Mavritsaki et al., 2010). We also found a significant involvement of occipital areas in the acute stage, which is more commonly reported in functional imaging studies of neglect than structural mapping studies (Vuilleumier et al., 2008; Khurshid et al., 2011; Umarova et al., 2011) but seems consistent with a role of occipital cortex and occipital white matter in visual neglect symptoms (Bird et al., 2006; Saj et al., 2010; Vossel et al., 2011). It is unclear why we found different anatomical correlates (in superior parietal and occipital rather than temporal areas) when using three tests similar to those of Karnath et al. (2011), but this discrepancy may reflect the existence of

Table 1 Neuropsychological results on paper and pencil tests. All scores were calculated as described in Verdon et al. (2010)

<table>
<thead>
<tr>
<th>Test</th>
<th>Neglect group</th>
<th>No neglect group</th>
<th>Chronic phase</th>
<th>No neglect group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acute</td>
<td>Chronic</td>
<td>Acute</td>
<td>Chronic</td>
</tr>
<tr>
<td>Bell cancellation (total omission)</td>
<td>15.7 (9.5)</td>
<td>23.2 (6.6)</td>
<td>2.4 (2.2)</td>
<td>3.3 (2.0)</td>
</tr>
<tr>
<td>Bell cancellation (centre of cancellation)</td>
<td>0.24 (0.36)</td>
<td>0.52 (0.25)</td>
<td>0.04 (0.08)</td>
<td>-0.01 (0.08)</td>
</tr>
<tr>
<td>Letter cancellation (left omission)</td>
<td>12.9 (11.1)</td>
<td>23.5 (7.7)</td>
<td>2.0 (3.3)</td>
<td>1.5 (2.4)</td>
</tr>
<tr>
<td>Letter cancellation (centre of cancellation)</td>
<td>0.16 (0.43)</td>
<td>0.46 (0.33)</td>
<td>-0.07 (0.09)</td>
<td>0.09 (0.7)</td>
</tr>
<tr>
<td>Copy of scene (omission)</td>
<td>1.1 (1.2)</td>
<td>2.1 (1.2)</td>
<td>0.0 (0.4)</td>
<td>0.1 (0.3)</td>
</tr>
<tr>
<td>Line bisection (total deviation cm, line 5 cm)</td>
<td>2.4 (1.9)</td>
<td>3.0 (1.5)</td>
<td>1.6 (1.3)</td>
<td>1.0 (0.8)</td>
</tr>
<tr>
<td>Line bisection (total deviation cm, line 20 cm)</td>
<td>5.2 (3.5)</td>
<td>7.6 (4.4)</td>
<td>3.9 (2.8)</td>
<td>3.6 (3.4)</td>
</tr>
<tr>
<td>Clock drawing (omission)</td>
<td>1.1 (0.9)</td>
<td>4.2 (5.4)</td>
<td>0.1 (0.3)</td>
<td>0 (0.2)</td>
</tr>
<tr>
<td>Text reading (total omission)</td>
<td>1.5 (1.9)</td>
<td>1.9 (1.7)</td>
<td>0.0 (0.2)</td>
<td>0 (0.3)</td>
</tr>
<tr>
<td>Writing (left margin, cm)</td>
<td>11.3 (6.3)</td>
<td>10.7 (4.5)</td>
<td>4.5 (2.8)</td>
<td>4.9 (3.4)</td>
</tr>
</tbody>
</table>
concomitant deficits in other tests in our patients. Moreover, the
drawing task was different in the two studies, with spatially more
distant items in ours, which might partly explain a greater correl-
ation with parietal damage. The additional foci observed with
three (but not eight) tests are likely to reflect a greater contribu-
tion of these regions to performance on these particular tasks,
which was not shared with the other five and hence ‘diluted’
when pooling all tests together.

On the other hand, our data add novel support to an important
role of the right temporal cortex in spatial awareness (Karnath,
2001; Luaute et al., 2009), particularly when using a composite
measure of neglect derived from different tests. Interestingly, this
region was found to correlate with spatial neglect when assessed
by a combination of tests including not only cancellation tasks but
also manual search and drawing (Karnath et al., 2001), somewhat
similar to the ‘total’ composite score derived from eight tests in
our analysis. However, it is intriguing that the acute lesion pattern
in temporal lobe obtained with eight tests in our patients most
resembled that obtained with three tests in the study of Karnath
et al. (2011; Fig. 2A) (Fig. 1B). This ‘paradoxical’ resemblance
suggests that temporal regions could actually reflect the most
common shared areas of damage (i.e. lowest common denominator)
in patients who present with neglect symptoms in several
disparate tests. However, such mapping of neglect severity across
various tests remains limited by the fact that a similar total score
can be obtained in patients who fail on different tasks. Other
recent studies suggested that temporal damage may preferentially
be associated with allocentric/object-based components of neglect
(Medina et al., 2009; Verdon et al., 2010), a disorder that could
contribute to impaired performance on several of our eight tests
(e.g. drawing, reading and line bisection).

The importance and originality of the study of Karnath et al.
(2011) is to highlight the crucial role of cortical and subcortical
structures whose lesion may lead to persistent spatial neglect dis-
order in chronic stage. Their findings also highlight a role for
white matter damage to the uncinate fasciculus in the emergence
of chronic neglect, whereas our own results (with eight tests) add-
itionally point to a role of subcortical damage around the tempor-
oparietal junction and superior longitudinal fasciculus (Fig. 1B) in
accord with other results (Samuelsson et al., 1997; Dorici et al.,
2003; Bartolomeo et al., 2007). However, a major problem for
conclusions related to the mechanisms of neglect and underlying
anatomical correlates is that their investigation is often limited by
the lack of specific tests measuring clearly distinct cognitive com-
ponents of neglect (Verdon et al., 2010). Because it is recognized
that a combination of different tasks (e.g. line bisection, cancella-
tion test and copy of scene) is necessary to detect spatial neglect
and its different manifestations (Jehkonen et al., 1998), it is
clinically useful to use batteries with several tests to guarantee
a reliable sensitivity of the diagnosis (Azouvi et al., 2006).
However, pooling heterogeneous deficits into a single entity might hamper our understanding of the exact cognitive mechanisms and neural circuits involved.

Accordingly, neglect has long been thought to implicate widely distributed brain networks (Mesulam, 1999; Corbetta et al., 2005; Vuilleumier, 2007), encompassing both cortical and subcortical regions as well as white-matter connections between them (Thiebaut de Schotten et al., 2008). The specific functions of each node within this large-scale network still remain to be elucidated. Recent work by our group (Verdon et al., 2010) has attempted to identify distinct spatial components contributing to neglect symptoms in different tests, and suggested that these components may have different neural substrates in parietal, frontal and temporal lobes, related to the egocentric perceptual, exploratory and allocentric object-based deficits, respectively. These results were replicated in the current data set (with different patients) when we applied the same methodology (Verdon et al., 2010) and performed a factorial analysis of 12 behavioural measures derived from our eight tests battery. Furthermore, performance across tests was accounted by five main factors (80.5% of explained variance) that predominantly regrouped (i) contralesional omissions in cancellation tasks plus neglect on clock drawing and writing; (ii) left–right difference in cancellation tasks; (iii) deviation on line bisection and reading errors; and (iv) deviation on line bisection and temporal slowing (in decreasing importance). These results are remarkably similar for the two phases and agree with our previous findings (Verdon et al., 2010). The very existence of these different factors underscores that neglect behaviour is not unitary, and that different dimensions are shared by some but not all tests. Therefore, rather than mapping the anatomy of different neglect syndromes (e.g. allocentric vs egocentric) or different tests (e.g. line bisection vs cancellation), it seems necessary to better identify component processes which can mediate distinct spatial computations, relying on distinct neural substrates, and potentially contribute to one or more of these clinical manifestations.

In summary, mapping lesions associated with acute and chronic neglect shows both resemblance and divergence between our data and the study of Karnath et al (2011). Other discrepancies have also been noted in previous anatomical studies of neglect (Doricchi and Tomaiuolo, 2003; Mort et al., 2003). The observed differences are likely to reflect the fact that using a small subset of tests (as in Karnath et al., 2011) might overlook the impact of other concomitant deficits, and that relying on a single measure of neglect severity might fail to account for the existence of distinct components underlying neglect behaviour, which can make different contributions (in additive or interactive manner) to allocentric deficits versus egocentric deficits, or perceptual deficits versus exploratory deficits (Commeteri et al., 2007; Medina et al., 2009; Verdon et al., 2010). Thus, averaging different kinds of neglect symptoms together into one single measure could potentially highlight the most frequent but least specific sites of damage, as found for the temporal lobe when pooling all different tests used in our

Table 2: Factorial analysis of neglect performance across all tests

<table>
<thead>
<tr>
<th>Test Score</th>
<th>Acute phase Factor 1</th>
<th>Acute phase Factor 2</th>
<th>Acute phase Factor 3</th>
<th>Acute phase Factor 4</th>
<th>Acute phase Factor 5</th>
<th>Chronic phase Factor 1</th>
<th>Chronic phase Factor 2</th>
<th>Chronic phase Factor 3</th>
<th>Chronic phase Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line bisection</td>
<td>26.43</td>
<td>18.39</td>
<td>17.25</td>
<td>10.75</td>
<td>7.69</td>
<td>34.23</td>
<td>10.09</td>
<td>19.24</td>
<td>11.25</td>
</tr>
<tr>
<td>Line 5 cm</td>
<td>0.68</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
<td>0.89</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Line 20 cm</td>
<td>0.79</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell cancellation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left omission</td>
<td>0.65</td>
<td></td>
<td></td>
<td>0.82</td>
<td></td>
<td>0.88</td>
<td>0.89</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Left–right omission</td>
<td></td>
<td>0.95</td>
<td></td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter cancellation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left omission</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td>0.89</td>
<td>0.89</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left–right omission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scene copy</td>
<td>0.68</td>
<td>0.80</td>
<td>0.62</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock drawing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left omission</td>
<td>0.78</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right omission</td>
<td>0.83</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td>0.53</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left margin (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each factor is shown with the corresponding amount of variance explained, eigenvalues, and factor loadings for the different test scores (when >0.5).
study. Future research investigating the neural substrates of spatial
neglect syndrome after brain lesions should pay close attention to
the tests employed and the cognitive functions recruited in order
to better understand the role of different neural components, and
therefore use a comprehensive battery assessing several distinct
domains of spatial cognition whenever possible. By doing so, ap-
parent discrepancies between studies might be easier to resolve
and efficient rehabilitation approaches targeting specific compo-
ients more readily designed.

Acknowledgements

The authors report no conflict of interest. All authors have full
access to all the data in the study and take responsibility for the
integrity of the data and the accuracy of the data analysis. We are
grateful to H.O. Karnath and C. Rorden for constructive discussion
and help during our own data analyses.

Funding

Swiss National Foundation (#3200BO-114014) and the Geneva
Academic Society (Fund Foremane).

References

Azouvi P, Bartolomeo P, Beis JM, Perennou D, Pradat-Diehl P,
Rousseaux M. A battery of tests for the quantitative assessment of
Baldo JV, Schwartz S, Wilkins D, Dronkers NF. Role of frontal versus
temporal cortex in verbal fluency as revealed by voxel-based lesion
Bartolomeo P, Thiebaut de Schotten M, Dorich F. Left unilateral neglect
Bird CM, Malhotra P, Parton A, Couthard E, Rushworth MF, Husain M.
Visual neglect after right posterior cerebral artery infarction. J Neurol
Neurosurg Psychiatry 2006; 77: 1008–12.
Bowen A, McKenna K, Tallis RC. Reasons for variability in the reported
rate of occurrence of unilateral spatial neglect after stroke. Stroke
Buxbaum LJ, Ferraro MK, Veramonti T, Fanne A, Whyte J, Ladavas E,
et al. Hemispatial neglect: Subtypes, neuroanatomy, and disability.
Neural bases of personal and extrapersonal neglect in humans. Brain
2007; 130: 431–41.
Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapis A. Neural basis and
recovery of spatial attention deficits in spatial neglect. Nat Neurosci
Dorich F, Tomaiuolo F. The anatomy of neglect without hemianopia: a
key role for parietal-frontal disconnection? Neuroreport 2003; 14:
2239–43.
Gainotti G, Tacci C. Patterns of drawing disability in right and left hemi-
Gauthier L, Dehaut F, Joanette Y. The bells test: a quantitative and
qualitative test for visual neglect. Int J Clin Neuropsychol 1989; 11:
49–53.
How to detect visual neglect in acute stroke. Lancet 1998; 351:
727–8.
Karnath HO. New insights into the functions of the superior temporal
Karnath HO, Ferber S, Himmelbach M. Spatial awareness is a function of
Karnath HO, Rennig J, Johannsen L, Rorden C. The anatomy underlying
acute versus chronic spatial neglect: a longitudinal study. Brain 2011;
134: 903–12.
Reperfusion of specific cortical areas is associated with improvement in
distinct forms of hemispatial neglect. Cortex 2011. Published online.
Dynamic changes in brain activity during prism adaptation. J Neurosci
Mavrutsaki E, Allen HA, Humphreys GW. Decomposing the neural mech-
anisms of visual search through model-based analysis of fMRI:
top-down excitation, active ignoring and the use of saliency by the
right TPI. Neuroimage 2010; 52: 934–46.
Medina J, Kannan V, Pawlak MA, Kleinman JT, Newhart M, Davis, C,
et al. Neural substrates of visuospatial processing in distinct reference
21: 2073–84.
Mesulam MM. Spatial attention and neglect: parietal, frontal, and cir-
gulated contributions to the mental representation and attentional
targeting of salient extrapersonal events. Philos Trans R Soc Lond B
Mesulam MM. Spatial attention and neglect: parietal, frontal and cingu-
late contributions to the mental representation and attentional target-
ing of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci
Mort DJ, Malhotra P, Mannan SK, Rorden C, Pambakian A, Kennard C,
Nobre AC, Coul J, Walsh V, Frith CD. Brain activations during visual
search: contributions of search efficiency versus feature binding.
Rorden C, Brett M. Stereotaxic display of brain lesions. Behav Neurol
Saj A, Honore J, Richard C, Bernati T, Rousseaux M. Hemianopia and
neglect influence on straight-ahead perception. Eur Neurol 2010; 64:
297–303.
Samuelsson H, Jensen C, Ekholm S, Naver H, Blomstrand C. Anatomical
and neurological correlates of acute and chronic visuospatial neglect
Thiebaut de Schotten M, Kinkringenhu S, Delmare C, Lehericy S,
Duffau H, Thivard L, et al. Visualization of disconnection syndromes
Acute visual neglect and extinction: distinct functional state of the
visuospatial attention system. Brain 2011. in press.
Verdon V, Schwartz S, Lovblad KO, Hauert CA, Vuilleumier P.
Neuroanatomy of hemispatial neglect and its functional components:
a study using voxel-based lesion-symptom mapping. Brain 2010; 133:
880–94.
Vocat R, Staub F, Stroppini T, Vuilleumier P. Anosognosia for hemiplegia:
Visual extinction in relation to visuospatial neglect after right-hemispheric stroke: quantitative assessment and statistical
lesion-symptom mapping. J Neurol Neurosurg Psychiatry 2011; 82:
862–8.
Vuilleumier P, Hemispatial neglect. In: Godefroy O, Bogousslavsky J,
et al., editors. The behavioral and cognitive neurology of stroke.
Vuilleumier P, Schwartz S, Verdon V, Maravita A, Hutton C, Husain M,
et al. Abnormal attentional modulation of retinotopic cortex in parietal